Glass Transition, Crystallization of Glass-Forming Melts, and Entropy
نویسندگان
چکیده
A critical analysis of possible (including some newly proposed) definitions of the vitreous state and the glass transition is performed and an overview of kinetic criteria of vitrification is presented. On the basis of these results, recent controversial discussions on the possible values of the residual entropy of glasses are reviewed. Our conclusion is that the treatment of vitrification as a process of continuously breaking ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero absolute temperature is in disagreement with the absolute majority of experimental and theoretical investigations of this process and the nature of the vitreous state. This conclusion is illustrated by model computations. In addition to the main conclusion derived from these computations, they are employed as a test for several suggestions concerning the behavior of thermodynamic coefficients in the glass transition range. Further, a brief review is given on possible ways of resolving the Kauzmann paradox and its implications with respect to the validity of the third law of thermodynamics. It is shown that neither in its primary formulations nor in its consequences does the Kauzmann paradox result in contradictions with any basic laws of nature. Such contradictions are excluded by either crystallization (not associated with a pseudospinodal as suggested by Kauzmann) or a conventional (and not an ideal) glass transition. Some further so far widely unexplored directions of research on the interplay between crystallization and glass transition are anticipated, in which entropy may play—beyond the topics widely discussed and reviewed here—a major role.
منابع مشابه
The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid
The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid was measured using parallel plate rheometry. The measurements were carried out with different heating rates between 0.0167 and 1.167 K/s as well as isothermally. Because of the high thermal stability above the glass transition of this bulk metallic glass former with respect to crystalli...
متن کاملDetermination of the activation energy of crystallization based up on Ozawa and Kissinger formalisms and thermal stability of V2O5-NiO- TeO2 glasses by differential scanning calorimetry (DSC)
In the present research work, (60-x)V2O5-xNiO-40TeO2 amorphous bulk compositions with different molar percentages of 0≤x≤20 mol%, were prepared by well-known rapid melt-quenching method. Differential scanning calorimetry (DSC) at different heating rates (φ) was used to thermal analyze and to obtain more insight in to the thermal stability, glass forming tendency and so calorimetric characteris...
متن کاملA NEW GENERATION OF OXYNITRIDE GLASSES CONTAINING FLUORINE
Oxynitride glasses are found as grain boundary phases in silicon nitride ceramics. They are effectively alumino-silicate glasses in which nitrogen substitutes for oxygen in the glass network, and this causes increases in glass transition and softening temperatures, viscosities (by two to three orders of magnitude), elastic moduli and microhardness. Calcium silicate-based glasses containing fluo...
متن کاملMonte Carlo and Molecular Dynamics Simulation of the Glass Transition of Polymers
Two coarse-grained models for polymer chains in dense glass-forming polymer melts are studied by computer simulation: the bond fluctuation model on a simple cubic lattice where a bond-length potential favors long bonds is treated by dynamic Monte Carlo methods, and a bead-spring model in the continuum with a Lennard-Jones potential between the beads is treated by Molecular Dynamics. While the d...
متن کاملProcessing and Characterization of Nanocrystalline Mica Glass-Ceramics
In order to fabrication of transparent glass-ceramics with Li-mica nano crystals, the glasses with chemical composition of 94.9 mass% Li(1+x)Mg3AlSi3(1+x)F2 (x=0.5) with 5.1 mass% MgF2 were crystallized. The glasses were fabricated via the conventional melt-quenching technique. Mica crystals were precipitated in the glass phase by later heat treatment. Glass samples had glass transition tempera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018